
Fortify Cheat Sheet
Table of Contents:

Introduction
Where Do Defects
Related To Security
Come From?
How Does Fortify
Help Me Find, Fix,
and Prevent
Defects?

Overview of Fortify
Standalone
Installation  
Optional Plug-Ins  

Scanning a Hello World
Project Using the Audit
Workbench

Getting Started With
The Audit
Workbench
Scanning Hello
World Source Code
Reviewing Scan
Results

Hints and Tips for Reviewing
Scan Results

Reviewing for False
Positives
Reviewing for False
Negatives

Where To Go From Here

This page has been made public for vendors

Introduction
The purpose of this document is to provide some notes that may be of assistance to VA
application developers in order to get started scanning VA application source code using
Fortify. This document is not a comprehensive reference for the Fortify product. Fortify
product documentation (installed in the "\Docs" directory of VA developer installations of
Fortify) should be consulted for clarification on finer points of using Fortify.  Additionally, 

 is available.Fortify end user training

Where Do Defects Related To Security Come
From?
There are very specific reasons why software developers must take deliberate, specific
actions both when writing new code and when maintaining legacy code in order to
mitigate security-related defects. Mitigating software defects cannot be delegated to
other information technology groups, and in many cases compensating security controls
may be ineffective or defeatable by attackers. These types of software defects come
from two sources:

Design-related decisions made during application development, and
Implementation decisions made during the actual coding of applications

Typically, half the defects in software applications result from design-related decisions
made during development. An example of a design-related vulnerability is not making
calls to security controls in code in the correct locations. A common vulnerability of this
type is making access control checks on the client side, as opposed to the server side of
a web application.   Typically, the other half of the defects in software applications result
from implementation decisions made during the actual coding of applications. An
example of a coding-related vulnerability is not using programming interfaces that
prevent control characters from being sent to downstream interpreters. A common
vulnerability of this type is querying a relational database using queries that were
constructed by concatenating strings, as opposed to using parameterized interfaces.  

How Does Fortify Help Me Find, Fix, and Prevent
Defects?
Fortify is a static analysis tool. This means that it can trace through your VA application
source code and apply various types of rules as it does so in order to identify defects.
This is as opposed to for example testing your VA application while it is running, or
analyzing the architecture of your application. After a scan is completed, results are
presented in a prioritized fashion and some guidance is provided to make fixes.

Overview of Fortify
There are various Fortify installation options that the VA is licensed for. Licensing options
for Fortify in general mainly have to do with allowing the use of plug-ins that are available
for some IDEs, and allowing the use of different scan rulepacks that are available for
various programming languages. The Fortify product can be thought of as being made
up of three components, as depicted in the figure below.

 

https://wiki.mobilehealth.va.gov/display/OISSWA/How+to+open+an+NSD+ticket+to+request+VA-provided+self-paced+Fortify+End+User+Training


 

The Fortify Static Code Analyzer component is the engine that scans code. It can be
called using the command line, using the Audit Workbench component, or using an IDE
plug-in. The Fortify Audit Workbench component is a standalone application that
provides a GUI to perform scans and to review scan results. The Fortify IDE plug-ins add
capabilities to supported IDEs that are similar to the GUI functionality of the Audit
Workbench.

An overview of the basic Fortify installation options that the VA is licensed for is provided
below.

Standalone Installation  
A standalone installation of Fortify can be used by VA developers separately than any
tools that they may already have installed to develop applications. This installation
includes for example a GUI front end called Audit Workbench that can be used to scan
application source code and to review scan results. The VA has a license that supports
standalone installations of Fortify on all platforms supported by Fortify, including
Windows, Mac OS, and UNIX.

Optional Plug-Ins  
A standalone installation of Fortify can optionally include one or more plug-ins that can
be used with certain tools that VA developers may already have installed to develop
applications. The VA license includes Fortify plug-ins for Visual Studio and Eclipse. See
the Fortify documentation for details.

Scanning a Hello World Project Using the
Audit Workbench
Sample code that can be scanned using Fortify is installed by default as part of the
standalone Fortify installation. The sample code that will be used as a "hello world" (i.e.
first, simple) scan can be found in the "\Samples\basic\eightball" directory of VA
developer installations of Fortify. It consists of a single Java language source code file.

Getting Started With The Audit Workbench
The Fortify Audit Workbench can be started from the Windows shortcut on VA developer
desktops, or from the Windows Start menu. A screen snapshot of the default start-up
screen of Fortify Audit Workbench is below.

 



Scanning Hello World Source Code
The sample code can be scanned as follows:

Select “Scan Java Project” •Select “C:\Program
Files\HP_Fortify\Fortify380\Samples\basic\eightball” as project root
Do not change default Java version
Do not change default scan options
Click “Run Scan” on “Audit Guide Wizard...”

After the scan completes, the Audit Workbench should look like the following screen
snapshot:

 

Reviewing Scan Results
The scan results can be reviewed using various features of the Fortify Audit Workbench
GUI. The features of the GUI that VA developers should familiarize themselves with
include:

The area in the upper left which can be used to filter and click through scan



 

 

 

results in a prioritized fashion,
The area in the middle bottom which can be used to get additional details about
an individual scan result, as well as suggestions for making fixes, and
The area in the middle top which will scroll to the line of code that corresponds
to a scan result as one clicks through the area in the upper left.

An example of selecting an individual scan result is below. Note how the file where the
defect was identified is displayed, the line of code where the defect was identified within
the file is highlighted, and how the Summary, Details, and other tabs in the area in the
middle bottom is now populated.  

Note that there are additional Fortify Audit Workbench capabilities that VA developers
should additionally familiarize themselves with as time and priorities allow, particularly in
the area of generating reports. There is an Audit Workbench User Guide that can be
found in the "\Docs" directory of VA developer installations of Fortify as time and priorities
allow.  

Hints and Tips for Reviewing Scan Results
There are limits to the capabilities of static analysis tools in general to understand and
analyze source code for various reasons. There will be results returned in some
instances by Fortify that are in other words noise, i.e. that are not defects. Fortify scan
results should always be reviewed for accuracy and completeness before for example
generating metrics. For example, reporting a large number of what amount to
informational findings can skew defect counts and unnecessarily cause concern.

Reviewing for False Positives
Reviewing Fortify scan results for issues that it reports that are not accurate is called
reviewing for false positives. VA developers should always review scan results for false
positives.

Reviewing for False Negatives
Additionally reviewing VA application source code manually or for example performing an
architectural analysis is called reviewing for false negatives, i.e. defects that Fortify did
not report. Reviewing for false negatives generally requires specialized expertise, for
example by an experienced secure code reviewer. VA developers should review scan
results for false negatives to the extent practical, e.g. if a developer is familiar with the
correct use of a security library, to manually review code to ensure its correct use
regardless of what Fortify reports.

Where To Go From Here
Additional VA resources that may be helpful to VA application developers can be found
elsewhere on this site.


	Fortify Cheat Sheet

